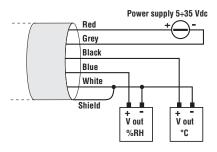




Dual relative humidity and temperature transmitter for HVAC applications, environmental monitoring, pharmaceutical storage, food transport, greenhouse automation, etc. Equipped with an IP65 stainless steel AISI 304 housing, it is suitable even for severe environments; besides, its ultra-compact dimensions (Ø 14 x 133 mm) and wide range of outputs (analogue 0...1V, digital RS232C OR RS485-MODBUS RTU, USB 1.1-2.0) make it ideal for integrating into a variety of OEM applications. It is supplied with the HD9817TC software for reading measurements and calibrating the relative humidity sensor.


# **VERSIONS, OUTPUTS AND CONNECTIONS**

|                    | HD9817T1R          | HD9817T1R.1       | HD9817T2R                            |
|--------------------|--------------------|-------------------|--------------------------------------|
| Output             |                    | 100%RH<br>10+60°C | RS232C non insulated, 2400 baud rate |
| Temperature sensor | Pt100              | NTC 10kΩ          | Pt100                                |
| Load resistance    | RI > 10kΩ          |                   |                                      |
| Cable              | L=1,5m             |                   | L= 2m DB9                            |
| Connection         | (7 wires + shield) |                   | female connector                     |

|                     | HD9817T2R.B                                | HD9817T3R                     | HD9817TVS                                                                              |
|---------------------|--------------------------------------------|-------------------------------|----------------------------------------------------------------------------------------|
| Output              | RS232C<br>non insulated,<br>2400 baud rate | USB 1.1-2.0<br>non insulated  | 01V = 0100%RH or $01V = -40+60$ °C DP $01V = -40+60$ °C RS485 Modbus RTU non insulated |
| Temperature sensor  |                                            | Pt100                         | Pt100                                                                                  |
| Load resitance      |                                            |                               | $R_{\parallel} > 10 k\Omega$                                                           |
| Cable<br>Connection | L= 2, without connector                    | L= 2m USB<br>connector type A | M12 8-pole connector. Provided with cable CP9817.3, L=3m                               |

#### **Connections**

HD9817T1 and HD9817T1.1 models with 0...1Vdc analogue output.



The instrument is equipped with a 7 wire + shield cable.

The **Yellow** and **Green** wires are used during calibration only for PC connection through the HD9817T.1CAL interface module (see the paragraph about the RH sensor calibration).

Power is supplied to the Red (+) and Grey (-) wires.

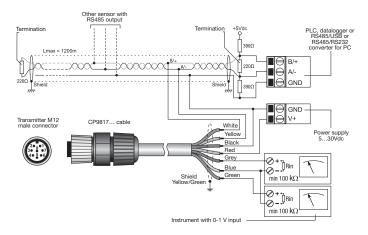
The output signal voltage is taken from:

- Black (+) and White (-) wires for temperature,
- Blue (+) and White (-) wires for relative humidity.

The **shield** must be connected to the White wire.

## HD9817T2 model with RS232C output and HD9817T3 model with USB output.

The HD9817T2 cable ends in a RS232C 9-pole subD female connector, while the HD9817T3 cable ends in a USB type A connector.


The following set of commands is available for both instruments.

| Command | Response               | Description                                                              |
|---------|------------------------|--------------------------------------------------------------------------|
| GO      | HD9817T_Pt100_RH_RS232 | Model                                                                    |
| G3      | Firm.Ver.=01-00        | Firmware version                                                         |
| HAnn.n  | &                      | 75% calibration point where nn.n stands for the actual humidity value    |
| HBnn.n  | &                      | 33% calibration point where nn.n stands for the actual humidity value    |
| S0      | 0072.7   063.9         | It sends the current measurement (tttt.t   hhh.h) t = temperature h = RH |
| UO      | &                      | International System of units                                            |
| U1      | &                      | Imperial units                                                           |

# Note for HD9817T3 model with USB ouput

This model requires that you install USB drivers first in order to ensure a correct PC connection: don't connect the instrument to your PC before installing the drivers. For further details, see the guide in the CDRom which is supplied with the instrument.

Wiring diagram of the 0...1Vdc analog outputs and of the RS485 digital output.



# Setting parameters for RS485 communication

Before connecting the transmitter to the RS485 network you must assign an address and set the communication parameters if different those preset at the factory. The setting of the parameters is made by connecting the transmitter to the PC by using the cable **CP24** (optional) with integrated RS485/USB converter or the cable **CP9817.3** supplied with the instrument and a generic RS485/USB or RS485/RS232 converter.

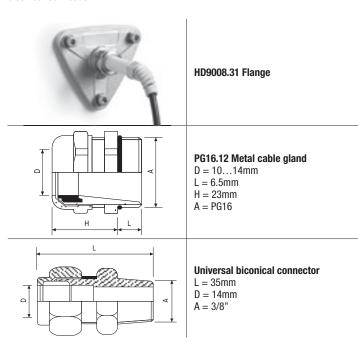
#### RELATIVE HUMIDITY CALIBRATION

The instruments are supplied factory calibrated and ready to use. The CDRom supplied with the instruments includes a relative humidity calibration procedure. The online help describes this procedure in detail.

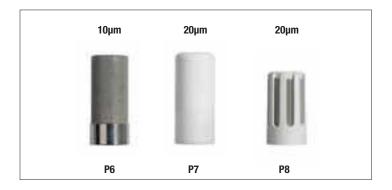
No procedure exists for temperature calibration.

To connect HD9817T1 and HD9817T1.1 models to your PC, use the HD9817T.1CAL interface module: the module is equipped with a USB type A connector for your PC USB port connection as well as a 4-pole terminal board to connect the transmitter.

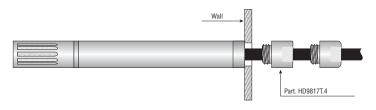
Before connecting the module to your PC, you need to install the USB drivers: don't connect the module to your PC before installing the drivers. For further details, see the guide in the CDRom which is supplied with the instrument.


Please connect the **Red** (power supply positive), **Grey** (power supply negative), **Yellow** (Tx) and **Green** (Rx) wires as shown in the figure below.

The terminal board is seen from above: in order to direct the clamps correctly, make sure that the label on the side of the module is placed as shown in the figure below.




#### **INSTALLATION NOTES**


To fix the probe in a ventilation duct, pipe ,etc. you can use, for example, the HD9008.31.12 flange, a PG16 metal cable gland ( $\oslash 10...14$ mm) or a 3/8" universal biconical connection.



For wall-mounted installation, the HD9008.21.1 (distance from wall 250mm) and HD9008.21.2 (distance from wall 125mm) supports are available. Both require the HD9008.26/14 adapter.



For direct wall mounting on a metal support, the HD9817T.4 part is available as shown in the figure below (for HD9817T1 and HD9817T1.1 versions only).



The wall can be 2mm thick at most while the hole in the wall can be 10.5mm.

#### Electrical connection

HD9817T1 and HD9817T1.1 models

#### Power supply

The power supply voltage must be as per the electrical specifications (5...35Vdc) between the wires:

**Red** = (+) power supply positive

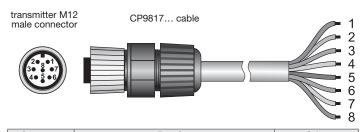
**Grey** = (-) power supply negative.

#### Analogue output

The voltage output signals are taken from the following wires:

**Blue** = (+)%RH output positive

**Black** = (+)Temperature output positive


White = (-) ground. Common reference between %RH and Temperature outputs.

**Shield** = the braid is connected to the common ground (White wire).

#### HD9817T2 and HD9817T3 models

These models are powered directly from your PC port and no external power supply is required.

Models HD9817TVS with analog outputs 0...Vdc and RS485 MODBUS-RTU output. They are supplied with the cable CP9817.3 equipped with the the M12 connector on the one side for the connection to the instrument and loose wires on the other side.



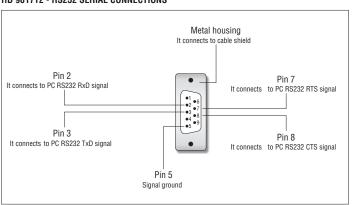
| Connector | Function                                         | Color        |
|-----------|--------------------------------------------------|--------------|
| 1         | Power supply negatine                            | Black        |
| 2         | Power supply positive                            | Red          |
| 3         | Not connected                                    |              |
| 4         | RS485 A/-                                        | Yellow       |
| 5         | RS485 B/+                                        | White        |
| 6         | Analog output negative                           | Blue         |
| 7         | Temperature analog output positive               | Grey         |
| 8         | humidity analog output positive                  | Green        |
|           | Cable shield (not connected tothe M12 connector) | Yellow/Green |

## HD9817T... DIMENSIONS



| Technical data                                            |                              |                                                          |  |  |
|-----------------------------------------------------------|------------------------------|----------------------------------------------------------|--|--|
| HD9817T1R - HD9817T1R.1 - HD9817T2R - HD9817T3R-HD9817TVS |                              |                                                          |  |  |
| Relative humidity                                         | Sensor                       | Capacitive                                               |  |  |
|                                                           | Sensor protection            | P8, stainless steel grid and PTFE, 20µ                   |  |  |
|                                                           | Measuring range              | 0100%RH                                                  |  |  |
|                                                           | Sensor working range         | -40+80°C                                                 |  |  |
|                                                           | Accuracy @20°C               | $\pm 1.5\%$ (090%RH), $\pm 2,0\%$ in the remaining range |  |  |
|                                                           | Temperature dependence       | 2% on the whole temperature range                        |  |  |
|                                                           | Hysteresis and repeatability | 0.4%RH                                                   |  |  |
|                                                           | Long term stability          | 1%/year                                                  |  |  |
| Temperature                                               | Sensor type                  | Pt100 1/3 DIN<br>(on request, NTC 10kΩ: code HD9817T1R.1 |  |  |
|                                                           | Measuring range              | -40+60°C                                                 |  |  |
|                                                           | Accuracy                     | ±0.2°C ±0.15% of the measured value                      |  |  |
|                                                           | Long term stability          | 0.2°C/year                                               |  |  |
| General                                                   | Power voltage                | 535Vdc                                                   |  |  |
|                                                           | Consumption                  | Typically 2mA                                            |  |  |
|                                                           | Max. operating temperature   | -40+80°C (for short periods)                             |  |  |
|                                                           | Operating humidity           | 0100%RH                                                  |  |  |
| Housing                                                   | Dimensions                   | Ø14x145mm                                                |  |  |
|                                                           | Degree of protection         | IP65                                                     |  |  |

## **ORDER CODES**


HD9817T1R: Dual relative humidity and temperature transmitter, Pt100 sensor. 0...1Vdc analogue outputs. Temperature measuring range -40...+60°C (-20... +80°C on request). Power supply 5...35Vdc. AISI 304 housing. Probe protection class IP65. Dimensions Ø14x145mm. Output with cable L=1,5m (7 wires + shield). Max. working temperature -40°...+80°C. Supplied with HD9817TC software.

**HD9817T1R.1:** Dual relative humidity and temperature transmitter, NTC sensor  $10k\Omega$ . 0...1Vdc analogue outputs. Temperature measuring range -40...+60°C (-20...+80°C on request). Power supply 5...35Vdc. AlSI 304 housing. Probe protection class IP65. Dimensions Ø14x145mm. Output with cable L=1,5m (7 wires + shield). Max. working temperature -40°...+80°C. **Supplied with HD9817TC software**.

HD9817T2R: Dual relative humidity and temperature transmitter, Pt100 sensor. RS232C digital output. Temperature measuring range -40...+60°C (-20... +80°C on request). Powered directly from your PC RS232C port. AISI 304 housing. Probe protection class IP65. Dimensions Ø14x145mm. Output with cable L= 2m with DB9 female connector. Max. working temperature -40°...+80°C. Supplied with HD9817TC software.

HD9817T3R: Dual relative humidity and temperature transmitter, Pt100 sensor. USB1.1-2.0 digital output. Temperature measuring range -40...+60°C (-20...+80°C on request). Powered directly from your PC USB port. AISI 304 housing. Probe protection class IP65. Dimensions Ø14x133mm. Output with cable L= 2m with USB type A connector. Max. working temperature -40°...+80°C. Supplied with HD9817TC software.

#### HD 9817T2 - RS232 SERIAL CONNECTIONS



HD9817TVS: Dual relative humidity and temperature transmitter, Pt100 sensor. 0...1Vdc analogue and RS485 MODBUS-RTU output. Temperature measuring range - 40...+60°C. Power supply 5...35Vdc. AISI 304 housing. Probe protection class IP65. Dimensions Ø14x145mm. Output with cable M12 8-pole connector. Supplied with CP9817.3 cable, length 3m.

CP24: PC connecting cable for the MODBUS parameters configuration. With built-in RS485/USB converter. 8-pole M12 connector on instrument side and A-type USB connector on PC side.

CP9817.3: Spare cable for HD9817TVS transmitter, with 8-pole M12 female connector on one side, open wires on the other side. Length 3 m.

HD9817T.4: Wall-mounting adapter. Only for HD9817T1 and HD9817T1.1 on request.
HD9817T1CAL: USB interface module for connecting HD9817T1 and HD9817T1.1 transmitters to your PC USB port as well as calibrating or checking the humidity sensor. USB connector type A, cable L=1.5m. Connection through 4-pole terminal board.

HD75: saturated salt solution 75% R.H. thread M 12x1.

HD33: saturated salt solution 33% R.H. thread M 12x1.

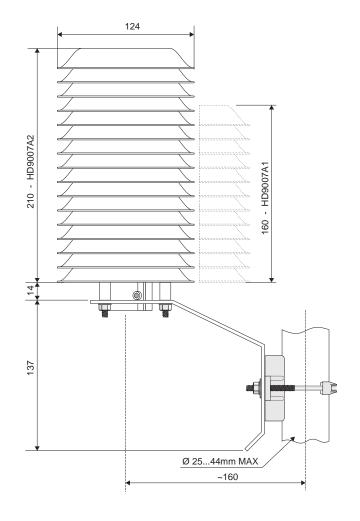
**HD9008.21.1:** holder for vertical sensor, wall distance 250mm, hole  $\emptyset$  26. HD9008.26.14 adapter is required.

**HD9008.21.2:** holder for vertical sensor, wall distance 125mm, hole  $\emptyset$  26. HD9008.26.14 adapter is required.

HD9008.26/14: holders for ∅ 26 and ∅ 14mm holes, for HD9008.21.1 and HD9008.21.2

**HD9008.31:** flange with sensor block Ø 14mm for duct sensorsTC and TO series.

**HD9007 A-1:** 12 ring protection from solar radiations for ∅ 26mm probes. Complete with mounting brackets. For the transmitters HD9817T the HD9007T26.2 adapter can be provided.


**HD9007** A-2: 16 ring protection from solar radiations for Ø 26mm probes. Complete with mounting brackets. For the transmitters HD9817T the HD9007T26.2 adapter can be provided.

**HD9007T26.2:** fitting for Ø 14mm transmitters (HD9817T...) for the protections from solar radiations HD9007 A-1 and HD9007 A-2.

**P6:** 10µ sintered stainless steel protection for probes Ø 14mm, thread M 12x1.

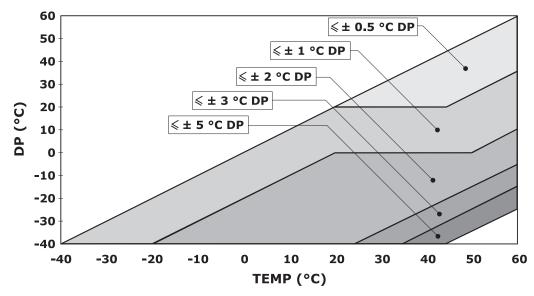
P7: 20μ PTFE protection for probes Ø 14mm, thread M 12x1.

P8: 20µ stainless steel and Pocan grid protection, thread M 12x1.





Rev. 1.6 30/10/2018


# **HD9817TVS**

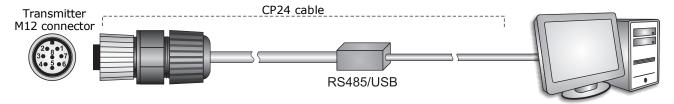
# Dual humidity and temperature transmitter with analog outputs and RS485 MODBUS-RTU output

Dual humidity and temperature transmitter for HVAC applications, environmental monitoring, pharmaceutical storage, food transport, greenhouse automation, etc. Equipped with an IP 65 stainless steel AISI 304 housing, it is suitable even for severe environments; besides, its ultracompact dimensions (Ø  $14 \times 155$  mm) and the 0...1 V analog and RS485 with MODBUS-RTU protocol digital outputs make it ideal for integrating into a variety of OEM applications. It is supplied with 3 m cable terminated with M12 connector.

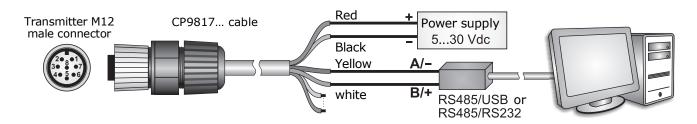
# **TECHNICAL CHARACTERISTICS**

| Humidity                       |                                                                                                                                                                                               |
|--------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Sensor                         | Capacitive, with stainless steel grid and Pocan filter (P8)                                                                                                                                   |
| Measuring range                | 0100% RH                                                                                                                                                                                      |
| Resolution                     | 0.1% RH                                                                                                                                                                                       |
| Accuracy                       | $\pm$ 1.5% (090% RH) / $\pm$ 2% (90100% RH) @ T=1535 °C $\pm$ (1.5 + 1.5% measure)% @ T= remaining range                                                                                      |
| Sensor working temperature     | -40+80 °C                                                                                                                                                                                     |
| Long term stability            | 1% / year                                                                                                                                                                                     |
| Temperature                    |                                                                                                                                                                                               |
| Sensor                         | Pt100 1/3 DIN                                                                                                                                                                                 |
| Measuring range                | -40+60 °C                                                                                                                                                                                     |
| Resolution                     | 0.1 °C                                                                                                                                                                                        |
| Accuracy                       | ± 0.2 °C ± 0.15% of the measured value                                                                                                                                                        |
| Long term stability            | 0.2 °C / year                                                                                                                                                                                 |
| Dew Point                      |                                                                                                                                                                                               |
| Sensor                         | Parameter calculated from the measurement of temperature and relative humidity                                                                                                                |
| Measuring range                | -40+60 °C DP                                                                                                                                                                                  |
| Resolution                     | 0.1 °C DP                                                                                                                                                                                     |
| Accuracy                       | See graph 1                                                                                                                                                                                   |
| General characteristics        |                                                                                                                                                                                               |
| Outputs                        | Two 01 Vdc analog outputs: one for the relative humidity or the dew point and one for the temperature (RL > 10 k $\Omega$ ) RS485 output (1 Unit Load) with MODBUS-RTU protocol, not isolated |
| Power supply                   | 530 Vdc                                                                                                                                                                                       |
| Consumption                    | 4 mA typical @ 12 Vdc                                                                                                                                                                         |
| Dimensions                     | Ø 14 x 155 mm                                                                                                                                                                                 |
| Degree of protection           | IP 65                                                                                                                                                                                         |
| Operating temperature/humidity | -40+80 °C for short periods / 0100% RH                                                                                                                                                        |




Graph 1 - Accuracy of the dew point measurement

# SETTING THE RS485 COMMUNICATION PARAMETERS OF THE TRANSMITER


Before connecting the transmitter to the RS485 network, an address must be assigned and the communication parameters be set, if different from the factory preset.

The setting of the parameters is performed by connecting the transmitter to the PC in one of the following two ways:

**A.** By using the optional **CP24** cable, with built-in RS485/USB converter. In this connection mode, the transmitter is powered by the PC USB port. To use the cable, it is necessary to install the related USB drivers in the PC.



**B.** By using the supplied **CP9817.3** cable and a generic RS485/USB or RS485/RS232 converter. In this connection mode, it is necessary to power the transmitter separately. If a RS485/USB converter is used, it is necessary to install the related USB drivers in the PC.



**Notes on the Installation of Unsigned USB DRIVER:** before installing unsigned USB driver into operating systems starting from Windows 7, it is necessary to restart the PC by disabling the driver signing request. If the operating system is 64-bit, even after installation the request of driver signing have to be disabled each time the PC is restarted.

# PROCEDURE FOR SETTING THE PARAMETERS

- **1.** Start with the transmitter not powered (if the CP24 cable is used, disconnect one end of the cable).
- **2.** Start a standard serial communication program, such as Hyperterminal. Set the COM port number to which the transmitter will be connected, set the Baud Rate to 57600 and the communication parameters as follows:

Data Bits: 8 Parity: None Stop Bits: 2

**3.** Switch the transmitter on (if the CP24 cable is used, connect both ends of the cable) and wait to receive the & character, then send (within 10 s from power on) the @ command and press **Enter**.

*Note*: if the transmitter does not receive the **@** command within 10 seconds from power on, the RS485 MODBUS mode is automatically activated. In such a case, it is necessary to switch off and on again the transmitter.

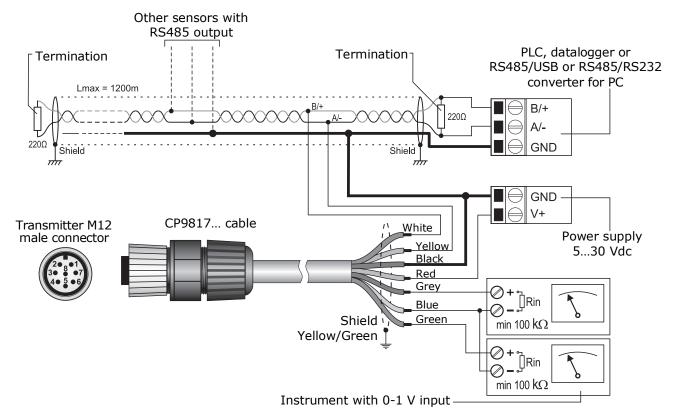
4. Send the command CAL USER ON.

Note: the command CAL USER ON is disabled after 5 minutes of inactivity.

**5.** Send the serial commands in the following table to set the RS485 MODBUS parameters:

| Command | Response | Description                                                                                                                             |
|---------|----------|-----------------------------------------------------------------------------------------------------------------------------------------|
| CMAnnn  | &        | Set RS485 address to nnn                                                                                                                |
|         |          | Ranging from 1 to 247. Preset on 1                                                                                                      |
| CMBn    | &        | Set RS485 Baud Rate                                                                                                                     |
|         |          | n=0 ⇒ 9600                                                                                                                              |
|         |          | n=1 ⇒ 19200                                                                                                                             |
|         |          | Preset on $1 \Rightarrow 19200$                                                                                                         |
| CMPn    | &        | Set RS485 transmission mode                                                                                                             |
|         |          | $n=0 \Rightarrow 8-N-1$ (8 data bits, no parity, 1 stop bit)                                                                            |
|         |          | $n=1 \Rightarrow 8-N-2$ (8 data bits, no parity, 2 stop bits)                                                                           |
|         |          | $n=2 \Rightarrow 8-E-1$ (8 data bits, even parity, 1 stop bit)<br>$n=3 \Rightarrow 8-E-2$ (8 data bits, even parity, 2 stop bits)       |
|         |          | $n=4 \Rightarrow 8-0-1$ (8 data bits, odd parity, 1 stop bit)                                                                           |
|         |          | $n=5 \Rightarrow 8-0-2$ (8 data bits, odd parity, 2 stop bits)                                                                          |
|         |          | Preset on 2 $\Rightarrow$ 8-E-1                                                                                                         |
| CMWn    | &        | Set receiving mode after RS485 transmission                                                                                             |
|         |          | $n=0 \Rightarrow Violate$ protocol and go in Rx mode right after Tx $n=1 \Rightarrow$ Respect protocol and wait 3.5 characters after Tx |
|         |          | Preset on 1 $\Rightarrow$ Respect the protocol                                                                                          |

**6.** You can check the parameters setting by sending the following serial commands:


| Command | Response      | Description                                                       |
|---------|---------------|-------------------------------------------------------------------|
| RMA     | Address       | Read RS485 address                                                |
| RMB     | Baud Rate     | Read RS485 Baud Rate                                              |
|         | (0,1)         | $0\Rightarrow9600$ , $1\Rightarrow19200$                          |
| RMP     | Tx Mode       | Read RS485 transmission mode                                      |
|         | (0,1,2,3,4,5) | 0 ⇒ 8-N-1                                                         |
|         |               | 1 ⇒ 8-N-2                                                         |
|         |               | $2 \Rightarrow 8$ -E-1                                            |
|         |               | $3 \Rightarrow 8$ -E-2                                            |
|         |               | $4 \Rightarrow 8-0-1$                                             |
|         |               | 5 ⇒ 8-0-2                                                         |
| RMW     | Rx Mode       | Read receiving mode after RS485 transmission                      |
|         | (0,1)         | $0 \Rightarrow Violate protocol and go in Rx mode right after Tx$ |
|         |               | $1 \Rightarrow$ Respect protocol and wait 3.5 characters after Tx |

# **OPERATING MODE CONNECTION**



| Connector | Function                                          | Color        |
|-----------|---------------------------------------------------|--------------|
| 1         | Power supply negative                             | Black        |
| 2         | Power supply positive                             | Red          |
| 3         | Not connected                                     |              |
| 4         | RS485 A/-                                         | Yellow       |
| 5         | RS485 B/+                                         | White        |
| 6         | Analog output negative                            | Blue         |
| 7         | Temperature analog output positive                | Grey         |
| 8         | Humidity analog output positive                   | Green        |
|           | Cable shield (not connected to the M12 connector) | Yellow/Green |

Power supply negative and analog output negative are internally shorted.



# Connection of RS485 and 0-1 V voltage analog outputs

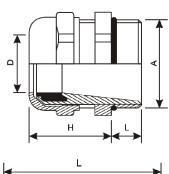
In the RS485 connection, the instruments are connected through a twisted-pair shielded cable for signals and a third wire for ground. Line terminations should be placed at the two ends of the network. To polarize the line during non-transmission periods, resistors connected between signal lines and power supply are used. The maximum number of devices that can be connected to the RS485 line (Bus) depends on the load characteristics of the devices to be connected. The RS485 standard requires that the total load does not exceed 32 unit loads. The load of an HD9817TVS transmitter is equal to 1 unit load. If the total load is greater than 32 unit loads, divide the network into segments and add a signal repeater between a segment and the successive one. Line termination should be applied at both ends of each segment.

# **OPERATING MODE**

The transmitter enters RS485 MODBUS-RTU mode after 10 seconds from power on. In the first 10 seconds from power on the transmitter does not reply to requests from the MODBUS master unit. After 10 seconds, it is possible to send MODBUS requests to the transmitter.

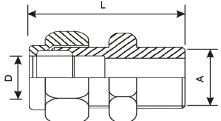
# READING OF THE MEASURES WITH THE MODBUS-RTU PROTOCOL

In MODBUS mode, you can read the values measured by the instrument through the function code 04h (Read Input Registers). The following table lists the information available with the appropriate register address:


| Address | Quantity                                                                                                                                                                                                                                                                        | Format         |
|---------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|
| 0       | Temperature in °C (x10)                                                                                                                                                                                                                                                         | 16-bit Integer |
| 1       | Temperature in °F (x10)                                                                                                                                                                                                                                                         | 16-bit Integer |
| 2       | Relative humidity in % (x10)                                                                                                                                                                                                                                                    | 16-bit Integer |
| 3       | Dew Point in °C (x10)                                                                                                                                                                                                                                                           | 16-bit Integer |
| 4       | Dew Point in °F (x10)                                                                                                                                                                                                                                                           | 16-bit Integer |
| 5       | Wet bulb temperature in °C (x10)                                                                                                                                                                                                                                                | 16-bit Integer |
| 6       | Wet bulb temperature in °F (x10)                                                                                                                                                                                                                                                | 16-bit Integer |
| 5       | Status register  bit $0 = 1 \Rightarrow$ temperature measurement error  bit $1 = 1 \Rightarrow$ humidity measurement error  bit $2 = 1 \Rightarrow$ dew point calculation error  bit $3 = 1 \Rightarrow$ configuration data error  bit $4 = 1 \Rightarrow$ program memory error | 16-bit Integer |

## INSTALLATION

To fix the probe in a ventilation duct, in a pipe ,etc. you can use the HD9008.31 flange, a PG16 metal cable gland ( $\varnothing$  10...14 mm) or a 3/8" universal biconical connection.




# **HD9008.31 Flange**



# PG16.12 metal cable gland

D = 10...14 mm L = 6.5 mm H = 23 mm A = PG16



# **Universal biconical connector**

L = 35 mm D = 14 mm A = 3/8" For wall-mounted installation, the HD9008.21.1 (distance from wall 250 mm) and HD9008.21.2 (distance from wall 125 mm) supports are available. Both require the HD9008.26/14 adapter.

# **SETTING THE ANALOG OUTPUTS**

The analog outputs of the transmitter are preset as follows:

Humidity analog output: 0 V = 0% RH , 1 V = 100% RH Temperature analog output: 0 V = -40 °C , 1 V = +60 °C

It is possible to change the configuration of the transmitter to:

- associate the humidity analog output to the dew point, rather than to the relative humidity;
- change the values of humidity and temperature corresponding to the initial and full scale of the analog outputs;
- add an offset to the analog outputs: 0.2...1 V instead of 0...1 V;
- reverse the direction of the outputs, so that the outputs decrease with the increasing of the corresponding measured quantity.

To configure the analog outputs, proceed as follows:

- **1.** Start with the transmitter not powered.
- **2.** Connect the transmitter to the PC by using the **optional CP24 cable** (as an alternative, use the supplied **CP9817.3** cable and a generic RS485/USB or RS485/RS232 converter; in this connection mode, it is necessary to power the transmitter separately).
- **3.** Start a standard serial communication program, such as Hyperterminal. Set the COM port number to which the transmitter will be connected, set the Baud Rate to 57600 and the communication parameters as follows:

Data Bits: 8 Parity: None Stop Bits: 2

**4.** Switch the transmitter on and wait to receive the & character, then send (within 10 s from power on) the @ command and press **Enter**.

*Note*: if the transmitter does not receive the **@** command within 10 seconds from power on, the RS485 MODBUS mode is automatically activated. In such a case, it is necessary to switch off and on again the transmitter.

**5.** Send the command **CAL USER ON**.

Note: the command CAL USER ON is disabled after 5 minutes of inactivity.

**6.** Send the serial commands in the following table:

| Command | Response | Description                                                                                                                                                                                                                   |
|---------|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CA1Innn | &        | Associates the initial scale of the temperature analog output to the value nnn nnn is the value of the quantity $x$ 10 (ex.: -400 means -40.0). The unit of measurement of the value (°C or °F) is set with commands OOE, OOD |
| CA1Fnnn | &        | Associates the full scale of the temperature analog output to the value nnn nnn is the value of the quantity x 10 (ex.: 600 means +60.0). The unit of measurement of the value (°C or °F) is set with commands OOE, OOD       |
| O0E     | &        | Sets °C as unit of measurement of the values associated to initial and full scale of the temperature analog output                                                                                                            |
| OOD     | &        | Sets °F as unit of measurement of the values associated to initial and full scale of the temperature analog output                                                                                                            |
| CA1oE   | &        | Adds the offset to the temperature analog output: 0.21 V                                                                                                                                                                      |
| CA1oD   | &        | Removes the offset from the temperature analog output: 01 V                                                                                                                                                                   |
| CA1iE   | &        | Reverses the direction of the temperature analog output: 10 V or 10.2 V depending on the presence of the offset                                                                                                               |
| CA1iD   | &        | Cancels the reversal of the direction of the temperature analog output: 01 V or 0.21 V depending on the presence of the offset                                                                                                |

| Command  | Response | Description                                                                                                                                                                                                                |
|----------|----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CA2Innnn | &        | Associates the initial scale of the humidity analog output to the value nnnn nnnn is the value of the quantity x 10 (ex.: 100 means 10.0). The unit of measurement of the value (% or °C DP) is set with commands O1E, O1D |
| CA2Fnnnn | &        | Associates the full scale of the humidity analog output to the value nnnn nnnn is the value of the quantity x 10 (ex.: 900 means 90.0). The unit of measurement of the value (% or °C DP) is set with commands O1E, O1D    |
| O1E      | &        | Sets °C DP as unit of measurement of the values associated to initial and full scale of the humidity analog output It is equivalent to associate the output to the dew point                                               |
| 01D      | &        | Sets % RH as unit of measurement of the values associated to initial and full scale of the humidity analog output  It is equivalent to associate the output to the relative humidity                                       |
| CA2oE    | &        | Adds the offset to the humidity analog output: 0.21 V                                                                                                                                                                      |
| CA2oD    | &        | Removes the offset from the humidity analog output: 01 V                                                                                                                                                                   |
| CA2iE    | &        | Reverses the direction of the humidity analog output: 10 V or 10.2 V depending on the presence of the offset                                                                                                               |
| CA2iD    | &        | Cancels the reversal of the direction of the humidity analog output: 01 V or 0.21 V depending on the presence of the offset                                                                                                |

# **7.** You can check the setting of the outputs by sending the following serial commands:

| Command | Response | Description                                                                                                                                                                                                                         |
|---------|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| RA1I    | & nnn    | Reads the value associated to the initial scale of the temperature analog output                                                                                                                                                    |
| RA1F    | & nnn    | Reads the value associated to the full scale of the temperature analog output                                                                                                                                                       |
| RA1o    | & n      | Reads the setting of the offset for the temperature analog output:  • without offset if n=0 • with offset if n=1                                                                                                                    |
| RA1i    | & n      | Reads the setting of the direction of the temperature analog output:  not reversed if n=0 reversed if n=1                                                                                                                           |
| RA2I    | & nnn    | Reads the value associated to the initial scale of the humidity analog output                                                                                                                                                       |
| RA2F    | & nnn    | Reads the value associated to the full scale of the humidity analog output                                                                                                                                                          |
| RA2o    | & n      | Reads the setting of the offset for the humidity analog output:  without offset if n=0 with offset if n=1                                                                                                                           |
| RA2i    | & n      | Reads the setting of the direction of the humidity analog output: <ul><li>not reversed if n=0</li><li>reversed if n=1</li></ul>                                                                                                     |
| RO      | hh       | Reads the quantities associated to the analog outputs bit $0 = 0 \Rightarrow$ temperature in °C bit $0 = 1 \Rightarrow$ temperature in °F bit $1 = 0 \Rightarrow$ relative humidity in % bit $1 = 1 \Rightarrow$ dew point in °C DP |

Note: it is not required to send the CAL USER ON command to read the settings.

Note: if a measurement error occurs or the measured quantity becomes 5% greater than the value set for the full scale of the corresponding analog output, the output is set to  $1.1\ V$  fixed value. If the measured quantity is less than the value set for the initial scale of the corresponding analog output, the output is fixed to the low value (0 V or  $0.2\ V$  depending on the presence of the offset).

When settings are completed, switch the transmitter off and then back on to activate the RS485 MODBUS-RTU operating mode.

# **RELATIVE HUMIDITY CALIBRATION**

The transmitter is factory calibrated and ready to use. It is possible to perform the periodical calibration of the relative humidity sensor at the two points 33% and 75% RH.

No calibration is scheduled for the temperature sensor.

Before starting calibration procedure, it is advisable to **verify**, with the aid of 33.0% RH and 75.4% RH saturated solutions, the necessity for a new calibration: perform calibration only if you notice a measurement error of some relative humidity percentage points in at least one of the two checked points.

The calibration must be performed at a temperature ranging between 18 and 30 °C.

The calibration procedure cancels previous calibration data.

For a correct sensor calibration, the first point must be 75% RH and the second point 33% RH.

**Calibration preliminary operations:** make sure that in the chamber containing the saturated saline solutions there are at the same time:

- solid-state salt,
- liquid solution or wet salt, especially for 75% RH solution.

The instrument and the saturated solutions to be used are to be kept in an environment at stable temperature for the entire period of calibration. Wait for at least a couple of hours at stable temperature so that the instrument and the saturated solutions reach thermal equilibrium with the environment before starting the calibration procedure. It is mostly important for a good calibration that the probe and the solution have the same temperature. Please remember that plastic material is a bad conductor of heat.

To configure the analog outputs, proceed as follows:

- 1. Unscrew the protection grid of the probe and the cap of the saturated solution.

  Note: if there is any liquid inside the measurement chamber, dry it with clean absorbent paper. To extend the saturated solutions life, it is important that solutions stay open only for the time necessary to insert the sensor.
- 2. Screw the M12 X 1 threaded adapter to the measuring probe.
- **3.** Screw threaded adapter with probe to saturated solution container. Do not touch the sensitive element with your hands or other objects or liquids.
- **4.** After inserting the sensor, wait for at least 30÷45 minutes.
- **5.** Connect the transmitter to the PC by using the **optional CP24 cable** (as an alternative, use the supplied **CP9817.3** cable and a generic RS485/USB or RS485/RS232 converter; in this connection mode, it is necessary to power the transmitter separately).
- **6.** Start a standard serial communication program, such as Hyperterminal. Set the COM port number to which the transmitter will be connected, set the Baud Rate to 57600 and the communication parameters as follows:

Data Bits: 8 Parity: None Stop Bits: 2

- **7.** Start with the transmitter not powered. Switch the transmitter on and wait to receive the & character, then send (within 10 s from power on) the @ command and press **Enter**.

  Note: if the transmitter does not receive the @ command within 10 seconds from power on, the RS485 MODBUS mode is automatically activated. In such a case, it is necessary to switch off and on again the transmitter.
- **8.** Send the command **S0** to read the temperature measured by the probe.

**9.** Read the relative humidity value corresponding to the measured temperature in the relative humidity-solution temperature correspondence table. For 75% RH solution the table is the following:

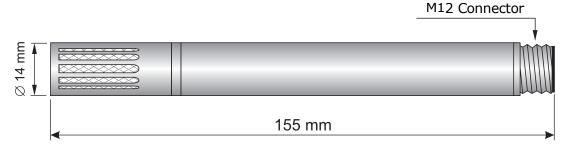
| Temp. °C | HD75  |
|----------|-------|
| 10       | 75.67 |
| 15       | 75.61 |
| 20       | 75.47 |
| 25       | 75.29 |
| 30       | 75.09 |
| 35       | 74.87 |
| 40       | 74.68 |
| 45       | 74.52 |
| 50       | 74.43 |

10. Send the command CAL START.

Note: the command CAL START is disabled after 5 minutes of inactivity.

- **11.** Send the serial command **CHAnnnn**, where nnnn is the value previously read in the saturated solution table. The value is written without decimal point (ex.: indicate 7547 if the value read in the table is 75.47%) and must be between 7300 (73.00%) and 7700 (77.00%). The transmitter replies with **&|** if the command is correctly received.
- **12.** Remove the probe from the 75% RH saturated solution and screw it to the 33% RH saturated solution.
- **13.** After inserting the sensor, wait for at least 30÷45 minutes.
- **14.** Send the command **S0** to read the temperature measured by the probe.
- **15.** Read the relative humidity value corresponding to the measured temperature in the relative humidity-solution temperature correspondence table. For 33% RH solution the table is the following:

| Temp. °C | HD33  |
|----------|-------|
| 10       | 33.47 |
| 15       | 33.30 |
| 20       | 33.07 |
| 25       | 32.78 |
| 30       | 32.44 |
| 35       | 32.05 |
| 40       | 31.60 |
| 45       | 31.10 |
| 50       | 30.54 |


16. Send the command CAL START.

Note: the command CAL START is disabled after 5 minutes of inactivity.

- 17. Send the serial command **CHBnnnn**, where nnnn is the value previously read in the saturated solution table. The value is written without decimal point (ex.: indicate 3307 if the value read in the table is 33.07%) and must be between 3000 (30.00%) and 3500 (35.00%). The transmitter replies with &| if the command is correctly received.
- **18.** Unscrew M12 X 1 threaded adapter from probe and place again the sensor protection grid, avoiding to touch the sensitive element. After use, immediately close with its cap the saturated solution used.

Note: store the salt solutions in the dark at a temperature of about 20 °C.

**DIMENSIONS** 



# **ORDERING CODES**

| HD9817TVS | Dual humidity and temperature transmitter, Pt100 sensor. 01 Vdc analog  |
|-----------|-------------------------------------------------------------------------|
|           | outputs and RS485 MODBUS-RTU output. Temperature measuring range        |
|           | -40+60 °C. Power supply 530 Vdc. AISI 304 housing. IP 65 probe          |
|           | protection degree. Dimensions Ø14 x 155 mm. Output with 8-pole M12 male |
|           |                                                                         |

connector. Supplied with CP9817.3 cable, length 3 m.

| CP24 | PC connecting cable for the MODBUS parameters configuration. With built-in |
|------|----------------------------------------------------------------------------|
|      | RS485/USB converter. 8-pole M12 connector on instrument side and A-type    |
|      | USB connector on PC side.                                                  |

| CP9817.3 | Spare cable with 8-pole M12 female connector on one side, open wires on |
|----------|-------------------------------------------------------------------------|
|          | the other side. Length 3 m.                                             |

| HD75 | Saturated solution for calibration at 75% RH, M12 x 1 threaded adapter. |
|------|-------------------------------------------------------------------------|
| HD33 | Saturated solution for calibration at 33% RH, M12 x 1 threaded adapter. |

| HD9008.21.1 | Holder for vertical               | probes. | Distance | from | wall | 250 mm. | Hole | Ø | 26 mm. |
|-------------|-----------------------------------|---------|----------|------|------|---------|------|---|--------|
|             | HD9008.26/14 adapter is required. |         |          |      |      |         |      |   |        |

| HD9008.21.2 | Holder for vertical               | probes. | Distance | from | wall | 125 mm. | Hole | Ø | 26 mm. |
|-------------|-----------------------------------|---------|----------|------|------|---------|------|---|--------|
|             | HD9008.26/14 adapter is required. |         |          |      |      |         |      |   |        |

| HD9008.26/14 | Adapter | to   | reduce    | Ø 26 mm | hole | to | Ø 14 mm. | For | HD9008.21.1 | and |
|--------------|---------|------|-----------|---------|------|----|----------|-----|-------------|-----|
|              | HD9008. | .21. | 2 holders | s.      |      |    |          |     |             |     |

| <b>HD9008.31</b> Duct | flange with | Ø 14 mm | probe block. |
|-----------------------|-------------|---------|--------------|
|-----------------------|-------------|---------|--------------|

| HD9007A-1 | 12-ring protection from solar radiations. Supplied with mounting bracket. |
|-----------|---------------------------------------------------------------------------|
| HD9007A-2 | 16-ring protection from solar radiations. Supplied with mounting bracket. |

| HD9007T26.2 | Bush fitting for Ø 14 mm transmitters (HD9817T) for the protections from |
|-------------|--------------------------------------------------------------------------|
|             | solar radiations HD9007A-1 and HD9007A-2                                 |

| P6 | 10µ sintered | stainless | steel | grid | protection, | for | probes | Ø 14 mm, | thread |
|----|--------------|-----------|-------|------|-------------|-----|--------|----------|--------|
|    | M12 x 1.     |           |       |      |             |     |        |          |        |

| P7 | $20\mu$ PTFE protection, for probes Ø 14 mm, thread M12 x 1.       |
|----|--------------------------------------------------------------------|
| P8 | $20\mu$ stainless steel grid and Pocan protection, thread M12 x 1. |

The quality level of our instruments is the results of the product continuous development. This can bring about differences between the information written in this manual and the instrument that you have purchased. We cannot entirely exclude errors in the manual, for which we apologize.

Data figures and descriptions contained in this manual cannot be legally asserted. We reserve the right

Data, figures and descriptions contained in this manual cannot be legally asserted. We reserve the right to make changes and corrections without prior notice.

**Delta OHM S.r.l. a socio unico** - Via G. Marconi 5 - 35030 Caselle di Selvazzano (PD) - Italy Tel. +39 049 8977150 r.a. Fax +39 049635596 e-mail: info@ deltaohm.com

- 10 -