

HD32.3TC

Bright and clear touch display

Measurement and calculated values directly visible

High memory capacity

Suitable for long lasting measurement cycles

O Data immediately available

Remotely accessible via FTP

Portable and independent

24 hours continuous measurement without recharging

Fully compliant with ISO regulations

ISO 7730 - ISO 7726 - ISO 7243

Thermal Comfort

Data logger

Microclimate / IAQ + PM measurements

HD32.3TC

with SICRAM module

Probes automatically

on the instrument

 One RS485 serial port for auxiliary probes

recognized by turning

Portable data logger suitable for indoor air quality and microclimate analysis (Indoor Air Quality, IAQ).

All data you need to have in just one logger: WBGT, PMV (Predicted Mean Vote), PPD (Predicted Percentage of Dissatisfied), DR (draft rate), TU (local Turbulence intensity), HI (Heat Index), UTCI (Universal Thermal Climate Index), TEP (Perceived Equivalent Temperature) indices, CO₂, VOC, PM1.0, PM2.5 and PM10 measurements.

Estimation of the SARS-CoV-2 decay on surfaces.

- A large memory capacity allows long measuring cycles and the rechargeable battery guarantees an operating autonomy of at least 24 hours.
 - A backlit color graphic LCD display with capacitive touch makes the navigation through the different screens and the visualization of the data **easy and immediate**.

Moreover, the measurement data can be sent to an FTP server by using the **Wi-Fi connection**.

According to ISO 7726 - ISO 7730 - ISO 7243 - ASHRAE Standard 55 and 62.1-2019.

Technical Specifications

Reference rules	ISO 7726 Measurement of turbolence - ISO 7730 Measurement of PMV/PPD - ISO 7730 Measurement of WBGT - ISO 7243
Export Formats	CSV - PDF
Display	LCD 480x800 pixels Capacitive touch screen
Connectivity	USB Host and Device RS485 powered Wi-Fi
Storage capacity	8 GB
Logging Interval	From 1 second to 1 hour

Power supply	Li-lon battery rechargeable via USB				
Autonomy	24 hours on maximum consumption				
Working temperature and RH	-550 °C 090% RH no condensation				
Protection degree	IP54				
Instrument uncertainty	± 1 digit @ 20 °C				
Dimensions and weight	185 x 90 x 40 mm - 500 g				
Inputs	3 inputs for probes with SICRAM module 1 input RS485 with M12 8-pole connector for PMsense-P				

Applications

There are numerous applications where the HD32.3TC provides a great solution.

Microclimate applications:

- √ Measurement of PMV, PPD global comfort indices and of DR local discomfort index in moderate environment
- √ Measurement of WBGT index in severe hot environment

IAQ applications:

- √ Measurement of comfort conditions and indoor air quality, for example in schools, offices, factories, etc.
- √ Sick building syndrome analysis
- $\sqrt{}$ Verification of the efficiency of Heating, Ventilation and Air Conditioning (HVAC) systems
- √ Building Automation

PROBES	TP3207.2 / TP3207*	TP3276.2 / TP3275*	HP3201.2 / HP3201*	TP3204S*	HP3217.2R / HP3217R*	AP3203.2 / AP3203*
Sensor	Pt100	Pt100	Pt100	Pt100	T= Pt100 RH= capacitive	NTC 10 kΩ
Measuring range	-40100 °C	-3020 °C	480 °C	480 °C	T= -40100 °C RH= 0100%	0.025 m/s 080 °C
Accuracy	1/3 DIN	1/3 DIN	Class A	Class A	T = 1/3 DIN RH = \pm 1,5% (090% RH) / \pm 2% (90 100% RH) @ T=1535°C (\pm 1.5 + 1.5% of the measurement) % @ T=remaining range	\pm (0.05 + 5% of the measurement) m/s
Resolution	0.1 °C	0.1 °C	0.1 °C	0.1 °C	0.1 °C/ 0.1 %RH	0.01 m/s
Temperature drift @20℃	0.003% / ℃	0.003% / ℃	0.003% / ℃	0.003% / ℃	0.02% RH/°C	0.06% /℃
Long term stability	0.1 °C / year	0.1 °C / year	0.1 °C / year	0.1 °C∕year	0.1% RH/ year	0.12 °C / year
Response time T ₉₅	15 minutes	15 minutes	15 minutes	15 minutes	15 minutes	
Tank capacity and autonomy			15 cc 96 hours @ RH=50%, T=23°C	500 cc 15 days @ T= 40 °C		

^{*} Probes with cable length 2 m.

For long lasting monitoring, the VTRAP **tripod and a 4-probe holder** are available.

PROBES	HP3217B4	HP3217BV4	PMsense-P	
Sensor	$T/R.H.= CMOS / F$ $CO_2 = NDIR / VOC = Me$	Laser scattering principle		
Measuring range	T= -2080 °C / P _{atm} = 3001250 hPa VOC index = 15	01000 μg/m³ (for each pollutant)		
Accuracy	T= 0.1 °C / RH = $\pm 2\%$ (0 CO ₂ = \pm (50 ppm + VOC index= relative q	<5% linearity error <3% repeatability		
Resolution	T = 0.1 °C / RH = 0.1 $CO_2 = 1 \text{ ppm / }$	0.1 μg/m³		
Temperature drift	dilli	.55 °C / 7001100 hPa) °C (-2045 °C)	< 0.01 μg/m³ /°C	
Long term stability	R.H. = < 0.2 P _{atm} = ± 0.3	03 °C/year 25 %RH/year 33 hPa/year measure/5 years		
Response time		I. = 10 s < 120 s	Measurements update rate 1 s	

	Probes and measured parameters								
	TP3207.2 / TP3207	TP3276.2 / TP3275	HP3201.2 / HP3201	TP3204S	HP3217.2R / HP3217R	AP3203.2 / AP3203	HP3217B4	HP3217BV4	PMsense-P
Which probes do I need to measure following indexes?	Air Temperature (T)	Globe thermometer temperature (T _g)	Natural v tempera (the 2 pr intercha	ture (T _{nw}) obes are	Relative Humidity and Air Temperature (RH – T)	Air Speed (V _a)	Air Temperature - Relative Humidity - Atmospheric Pressure - CO ₂	As HP3217B4 + VOC Index	PM1.0, PM2.5 and PM10
WBGT	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$					
WBGT		$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$				
Mean Radiant Temperature T _r		V			$\sqrt{}$	$\sqrt{}$			
PMV		V			$\sqrt{}$	$\sqrt{}$			
PPD	_	$\sqrt{}$				$\sqrt{}$			
TU						$\sqrt{}$			
DR						\checkmark			
HI					√				
UTCI		$\sqrt{}$			$\sqrt{}$	$\sqrt{}$			
TEP		$\sqrt{}$			$\sqrt{}$	$\sqrt{}$			
SARS-CoV-2	_				√		√	$\sqrt{}$	
CO ₂							$\sqrt{}$	$\sqrt{}$	
VOC								$\sqrt{}$	
PM1.0 / PM2.5 / PM10									√

 $\sqrt{\ }$ = Only one of the indicated probes is sufficient to obtain the measurement $\sqrt{\ }$ = To obtain the measurement, the combination of the probes is necessary

The colored bar in the PMV/PPD index, heat index, UTCl temperature and TEP temperature screens indicates the evaluation of thermal stress.

Based on the environmental T and RH values, the natural decay time of the SARS-CoV-2 virus on surfaces is estimated, according to the equation published by the "U.S. Homeland Security department".

Qualità dell'Aria
Qualità dell'Aria
Qualità dell'Aria
Qualità dell'Aria
104000:00
T 25.2 °C
RH 51.5 %
CO2 1267 ppm
VOC 50
Patrn 1013.3 hPa

Detection of volatile organic compounds (VOC) - after the time of adaptation to the environment, the state of VOC pollution is expressed as an index variable from 1 to 500 (dimensionless)

Graph display of 2 quantities in real time - Selectable quantities and time scale values - Setting of reference treshold and possibility to enable visual alarm.

